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ABSTRACT 
 
This paper presents a simulation designed to optimize 
Earth flight test trajectories of parachute-payload 
systems. These trajectories attempt to replicate the 
conditions experienced by a parachute during 
supersonic descent through the Martian atmosphere. 
The critical parameters that need to be closely matched 
in a supersonic flight test are the peak opening load and 
the parachute load time history, both of which are key 
parameters to parachute structural qualification. To 
investigate the associated Earth flight test requirements, 
descent trajectories and parachute loading profiles are 
generated for a 4,000 kg payload using a 30 m nominal 
diameter disk-gap-band parachute deployed at Mach 3 
on Mars. Subsequent Earth flight test trajectories are 
optimized and compared to the reference Mars cases. 
Both Mars and Earth simulations use two different 
parachute loading models: an inflation curve and an 
apparent mass model. Given the same initial conditions, 
both models generate similar results, but trajectory 
optimization using each model generates different 
Earth flight conditions. Finally, a brief investigation 
into the aerodynamic heating experienced by a 
supersonic parachute on both Earth and Mars is 
performed and compared to observed DGB heating 
profiles. 
 
NOMENCLATURE 
 
Symbols
CDS Parachute drag area 
CD,0 Parachute steady-state drag coefficient 
Cx Inflation curve opening load factor 
D0 Parachute nominal diameter 
Dv Test vehicle diameter 
Fp Parachute load 
Fp,max Peak opening load at parachute full inflation 
Fp,avg Average parachute load over a period of time 
L Inflation distance 
M Mach number 
F( x ) Optimizer objective function 
S0 Parachute nominal area 
Sp Parachute projected area 
Sr Parachute projected area ratio 
V Velocity 
  

a Speed of sound 
g Acceleration due to gravity 
h Altitude 

h0 Initial altitude at line stretch 
k0 Apparent mass constant 
ma Parachute apparent mass 
mp Parachute canopy mass 
mv Test vehicle mass 
n Inflation curve exponent 
q Dynamic pressure 
t Time 
tFI Time at full inflation 
tfill Parachute inflation time 
tLS Time at parachute line stretch 
tM=1.5 Time, measured from full inflation, until the 

vehicle decelerates to Mach 1.5 
tSI Time at start of inflation, assumed to occur at 

parachute line stretch 
x  Vector of design variables 

  

α Inflation distance constant 
β Ballistic coefficient 
γ Flight path angle OR ratio of specific heats 
γ0 Flight path angle at start of inflation of Earth 

flight test 
γMars Flight path angle at start of inflation of 

reference Mars trajectory 
ρ Fluid density 
  

ΔFp,avg Percent difference in average parachute load 
between Earth and Mars trajectories 

ΔFp,max Percent difference in peak opening load 
between Earth and Mars trajectories 

ΔtM=1.5 Percent difference in time from full inflation 
to Mach 1.5 between Earth and Mars 
trajectories 

  

Acronyms
BLDT Balloon-Launched Decelerator Test 
DGB Disk-gap-band 
DOF Degrees of freedom 
EoMs Equations of motion 
IC Initial condition 
NASA National Aeronautics and Space 

Administration 
 
1. MODELS 
 
1.1. Equations of Motion 
 
The following assumptions are made in deriving the 
EoMs: 
 
 



1) A flat, non-rotating planet with no winds. 
2) The parachute is rigidly connected to the payload. 
3) Only drag forces are considered. 
4) There are only two degrees of freedom, with 

motion constrained to a single plane. 
 
The EoMs that are used in the trajectory simulation are: 
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where V is the system’s velocity, ρ is atmospheric 
density at altitude, β is the system’s ballistic coefficient 
(mass divided by drag area), g is the local acceleration 
due to gravity, γ is the flight path angle (positive above 
the horizon), and h is altitude. 
 
1.2. Inflation Models 
 
To capture the force *  associated with the parachute 
inflation, two separate parachute inflation models are 
employed: an inflation curve model and an apparent 
mass model. 
 
The inflation curve model †  is an empirical inflation 
model that assumes a given drag area growth profile 
and that the peak load is related to the steady-state 
force of the parachute by an assumed opening load 
factor (Cx). Parachute force (Fp) represented by the 
inflation curve model is given in Eq. 2. 
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where q is the dynamic pressure, CD,0 is the steady-
state parachute drag coefficient, S0 is the nominal 
parachute area, t is time, tSI is the time at start of 
inflation, tFI is the time at full inflation, and n is the 
inflation curve exponent, which defines the drag area 

                                                           
* Force is used to denote aerodynamic forces only; 
load is used to denote aerodynamic and non-
aerodynamic (i.e. mortar recoil, snatch) forces. Since 
non-aerodynamic forces are not calculated in this 
study, aerodynamic forces are used as a surrogate for 
parachute load.  
†  Obtained from unpublished work by Dr. Juan R. 
Cruz. 

growth profile. The accuracy of this method depends 
on proper selection of values for Cx and n. 
 
The apparent mass model [1] attempts to improve the 
physics model of parachute inflation by including 
effects of the air mass. During the inflation process, the 
parachute accumulates air mass within and around the 
canopy – mass referred to as apparent mass. This mass 
becomes part of the parachute-payload system and 
subsequently yields additional terms in parachute force 
equation. A revised parachute force equation that 
accounts for apparent mass is shown in Eq. 3. 
 

 ( )[ ] γsingmVmm
dt
dSqCF ppaDp +++=  (3) 

 
where CDS is the parachute drag area, ma is the 
apparent mass, and mp is the parachute canopy mass. 
The CDS term is the change in quasi-steady-state drag 
area of the parachute during inflation and is assumed to 
be 
 rDD SSCSC 00,=  (4) 
 
where Sr is the parachute projected area ratio 
( Sr = Sp /Sp,max ) at a given point during the inflation. Sp 
is the parachute’s projected area, which changes with 
time, and Sp,max is the maximum projected area, attained 
at full inflation. The apparent mass is modeled as 
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where k0 is a non-dimensional, empirical constant and 
the πD0

3/12 term is the volume of a hemisphere of 
diameter D0. Differentiating Eq. 5 with respect to time 
and assuming that dρ/dt is small over the time period 
of interest, results in 
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To obtain a parachute force time history, a trajectory 
providing q, ρ, V, and CD,0 time histories is required. 
The difficulty in implementing this apparent mass 
model lies in the determination of an appropriate time 
dependence for Sr and dSr/dt as well as a value for k0,. 
 
1.3. Inflation Time 
 
In order to use either of the parachute force models 
described above, the inflation time of the parachute 
must be known. Greene[ 2 ] presents a method to 
predict a parachute’s opening distance as a function of 
the parachute’s diameter and Mach number at the start 
of inflation. Greene’s inflation distance (L) model is 
given by 
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where γ is the ratio of specific heats of the fluid (not to 
be confused with flight path angle), M∞ is the 
freestream Mach number, and α is an empirical 
constant dependent on the canopy geometry. 
Knowledge of a parachute’s opening distance is useful 
in the case of an infinite mass inflation (i.e. constant 
velocity) as inflation time can be directly estimated 
from the deployment velocity. This type of inflation is 
indicative of supersonic parachutes in thin atmospheres, 
such as that experienced at Mars or in a high-altitude 
flight test on Earth. 
 
Greene assumed in his analysis that a normal shock 
exists in front of the parachute canopy during inflation, 
the velocity of the air inside the canopy is essentially 
zero, and that the gas behaves as a perfect gas. The 
assumptions underlying Greene’s model have been 
subject to scrutiny and criticism, however. Wolf [3] 
argued that the assumption of a normal shock in front 
of the parachute during inflation is invalid. In Wolf’s 
analysis, the relative mass of the parachute canopy to 
the air mass contained within the fully-inflated canopy 
(referred to as the parachute mass ratio) is a key 
parameter that is absent from Greene’s model. In other 
words, a parachute canopy that has more relative 
inertia than the fluid contained within the canopy (such 
as the case in a low-density atmosphere) will 
experience a slower inflation time. This makes sense 
physically, as it will take longer for the relatively low 
inertia air mass to impart movement on the relatively 
high inertia canopy fabric.  
 
However, it should be noted that both Greene and Wolf 
used essentially the same data to calibrate their 
fundamentally different models. In spite of the 
differences, both models are capable of reproducing the 
available data to the same degree of accuracy. This is 
due to the fact that Mach number and parachute mass 
ratio effects cannot be separated using the available 
data. Since both Wolf and Greene appear to be able to 
predict inflation time with the same accuracy, and 
Greene’s method is substantially easier to implement, 
Greene’s method is employed in this analysis. 
 
2. MODEL CALIBRATION AND VALIDATION 
 
To determine representative values for each of the 
model parameters described above, both parachute 
force models were calibrated against data from the 
Balloon Launched Decelerator Test (BLDT) program 
vehicle AV-4 flight test [ 4 ]. The 2-DOF simulation 

was subsequently validated against the available AV-4 
trajectory data using the calibrated parachute force 
models. The conditions at AV-4 mortar fire, 
summarized in Table 1, were used as the initial 
conditions (ICs) the simulation validation. 
 

Table 1. AV-4 flight test parameters. 
Test vehicle mass mv 860.5 kg 
Test vehicle diameter Dv 3.51 m 
Parachute mass mp 37.6 kg 
Parachute nominal diameter D0 16 m 
Initial state (at mortar fire) h0 44,862 m 
 V0 698.1 m/s 
 γ0 12.3o

Time (from mortar fire) tSI 0.985 s 
 tFI 1.545 s 
Parachute Inflation Time tfill 0.56 s 

 
2.1. Calibration of Key Parameters 
 
The empirical constants in both the inflation curve and 
apparent mass models were tuned using AV-4 inflation 
data. Fig. 1 shows very good agreement between the 
simulated and observed parachute area ratio growth 
profile of AV-4. The only difference exists at peak 
inflation where AV-4 undergoes a slight over-inflation 
which is not accounted for in the present models. 
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Fig. 1. Parachute projected area ratio profile for 

inflation curve and apparent mass models. 
 

Because of the excellent fit between the inflation curve 
modeled in Fig. 1 and AV-4, the same relationship was 
used to model Sr in the apparent mass model. Since Sr 
is specified as an analytic expression, its derivative is 
easily found to provide an analytic relationship for 
dSr/dt. The relationships for both Sr and dSr/dt are 
given below in Eq. 8. 
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The empirical coefficient α used in Greene’s inflation 
distance model was calibrated to match the actual 
AV-4 inflation time. A summary of the observed AV-4 
data and the calibrated empirical terms for each model 
is given below in Table 2. 
 

Table 2. Summary of model calibration values. 
AV-4 flight data Fp,max 72,043 N 
 tfill 0.560 s 
Inflation curve model Cx 1.529 
parameters n 5 
 Fp,max 72,064 N 
Apparent mass model k0 1.426 
parameters Fp,max 72,045 N 
 Sr Eq. 8 
 dSr/dt Eq. 8 
Opening distance α 7.39 
parameters tfill 0.560 s 

 
2.2. Trajectory Validation 
 
Using the ICs prescribed in Table 1, a trajectory 
simulation was conducted and compared to AV-4 flight 
data, shown in Fig. 2a – 2c. 
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(a) Time vs. Altitude 
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(b) Time vs. Mach Number 
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(c) Time vs. Dynamic Pressure 

 

Fig. 2. Trajectory comparison of simulation vs. AV-4 
flight data. 

 
In general, Fig. 2 shows good agreement between the 
AV-4 flight test data and the simulation until about 10 
sec. This deviation after 10 sec was also observed by 
Talay [5], who cited winds during the test flight (which 
were not modeled) as the primary culprit. 
 
3. EARTH FLIGHT TEST OPTIMIZATION 
 
The goal of this analysis is to develop optimized flight 
test trajectories on Earth that can accurately reproduce 
the parachute peak load and load time history 
experienced by the parachute during inflation on Mars. 
The optimization problem to generate these trajectories 
is posed as: 
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3.1. Design Variables 
 
In an actual Earth flight test, there are realistically three 
parameters that can be controlled in order achieve the 
desired flight conditions: the mass of the test vehicle 
(mv), the altitude at which the parachute begins 
inflation (h0), and the flight path angle at the start of 
parachute inflation (γ0). These three parameters 
represent the design variables in the optimization posed 
above. 
 
3.2. Constraints 
 
The two constraints of the optimization problem 
represent the two most important parameters to match 
in the flight test of a parachute. The peak load (Fp,max) 
is the greatest force which the parachute must 
withstand, which is important for parachute structural 
qualification. Thus, the peak load at Earth ( )

EarthpF max,  

must be equal to the peak load experienced at Mars 
( )

MarspF max, . The duration between full inflation and 

the point at which the system decelerates to Mach 1.5 
(tM=1.5) is also important. Above Mach 1.5, a DGB 
canopy typically exhibits rapid opening and collapsing 
oscillations, with each oscillation subjecting the 
parachute large amplitude cyclic loads. Around Mach 
1.5, the parachute achieves a stable canopy shape, 
ending the cyclic loads. A tolerance factor (tol) of 
±10% of the reference tM=1.5 is used because exact 
agreement is not possible (see Section 5.4) and a 10% 
agreement in an actual flight test would be sufficient. 
 
3.3. Objective Function 
 
Matching the time to Mach 1.5 does not guarantee that 
the loads experienced during this time will be similar. 
Thus, the objective function attempts to minimize the 
sum square error in parachute load between the Earth 
and Mars trajectories to most closely reproduce the 
force time history between full inflation and Mach 1.5.  
 
4. REFERENCE MARS TRAJECTORIES 
 
To investigate the potential requirements for future 
parachute qualification, a large payload of 4000 kg was 
assumed to enter into the Mars atmosphere and deploy 
a 30 m nominal diameter DGB parachute at Mach 3. 
The trajectories were started at parachute line stretch 
(i.e. Mach 3) and considered four flight path angles, 
γMars = 0o, -15o, -30o, and -45o, with a deployment 
altitude such that allows the vehicle to decelerate to 
Mach 0.8 at 5,000 m altitude. The rationale behind 
achieving Mach 0.8 at 5,000 m altitude is based on the 

work by Braun and Manning [ 6 ]. By utilizing a 
supersonic parachute at Mach 3 to decelerate the 
vehicle to Mach 0.8 at 5,000 m altitude, there will be 
ample timeline to complete the descent and landing 
sequence. Fig. 3 presents the descent trajectory and 
load profile for the γMars = -30o case.  
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(a) Mach Number vs. Altitude 
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(b) Time from Line Stretch vs. Parachute Load 

 

Fig. 3. Mars trajectory and parachute load time history 
for γMars = -30o. 

 
Table 3 lists the peak load experienced during each 
case and the time from peak load to Mach 1.5. The 
longer tM=1.5 time is due to the fact that the apparent 
mass trajectories are initiated at a higher altitude than 
the inflation curve trajectories (to achieve the Mach 0.8 
at 5,000 m condition), which effectively translates into 
less density to decelerate the vehicle.  
 
 
 
 
 
 
 
 



 
Table 3. Pertinent parameters from Mars trajectory. 

 Inflation Curve Apparent Mass 
γMars  
(deg) 

Fp,max 
(kN) 

tM=1.5 
(sec) 

Fp,max 
(kN) 

tM=1.5 
(sec) 

0o 729.8 2.79 732.9 2.96 
-15o 682.6 3.01 685.9 3.19 
-30o 639.1 3.22 641.3 3.43 
-45o 598.3 3.43 600.1 3.65 

 
5. RESULTS 
 
5.1. System Reponses 
 
There are three parameters (referred to as system 
responses) that are of interest from the simulation: 
ΔFp,max, ΔtM=1.5, and ΔFp,avg. The difference in peak 
opening load, expressed as a percent difference from 
the reference Mars value, is represented by ΔFp,max. The 
difference in time between full inflation and Mach 1.5, 
expressed as a percent, is represented by ΔtM=1.5. 
Finally, the difference in the time-averaged parachute 
load between full inflation and Mach 1.5, expressed as 
a percent of the reference Mars value, is represented by 
ΔFp,avg. This average parachute load is used in lieu of 
the optimization objective function ( )xF  as a measure 
of the “goodness” of the optimization because it is hard 
to determine the relative magnitude of a “good” sum 
square error. It is easier to understand and compare the 
relative magnitudes of the average parachute load, 
which can be plotted on the same chart as the parachute 
load profile.  
 
Negative response values indicate that the given 
response at Mars is larger than that at Earth. For 
example, a negative ΔFp,max indicates that the peak 
opening load experienced during Mars descent is 
greater than the peak opening load obtained during the 
Earth flight test. “Good” responses are defined as less 
than a 10% difference between Earth and Mars. 
 
5.2. Optimization of Earth Flight Test Trajectories 

to Match the Reference Mars Peak Opening 
Load 

 
A set of Earth flight test initial conditions (ICs) was 
optimized for each reference Mars trajectory and each 
parachute force model. These optimal Earth flight test 
ICs, which occur at line stretch (defined as the start of 
parachute inflation), and the subsequent system 
responses are summarized in Table 4. The resulting 
parachute load profiles are shown in Fig. 4. 
 
 
 
 
 
 

Table 4. Optimized flight test parameters for 
γMars = -30 deg. 

 Inflation 
Curve 

Apparent 
Mass 

mv (kg) 2,908.2 2,424.5 
h0 (km) 39,103 40,234 
γ0 (deg) 1.62 -45.3 
ΔFp,max 0.0% 0.0% 
ΔtM=1.5 7.63% -8.76% 
ΔFp,avg 0.0% -0.87% 

 
The results in Table 4 show that the optimal set of 
initial conditions using the inflation curve model 
differs substantially from those obtained using the 
apparent mass model. Do the parachute force models 
differ greatly in their results or do the constraints force 
the optimizer to a different solution based on a small 
difference in the parachute force modeling? Results 
show that the latter case is true. Two simulations were 
conducted with the ICs swapped – the inflation curve 
model was utilized with the ICs obtained from the 
apparent mass optimization and vice versa. The results 
of these swapped simulations show that the two force 
models generate similar results given the same initial 
conditions. Furthermore, it appears that the ICs 
optimized using the inflation curve model appear to 
generate a better match to the reference Mars load 
profile for both force models. 
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(a) Inflation curve model. 
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(b) Apparent mass model. 

 

Fig. 4. Parachute load curves for γMars = -30 deg. 
 
5.3. Acceptable Range of Test Vehicle Masses 
 
Given the results in Fig. 4, it appears that acceptable 
flight conditions (defined as within ±10% response 
difference from the reference) can be obtained for 
multiple test vehicle masses by flying a different 
trajectory. If this is true, then the test vehicle does not 
necessarily have to be ballasted to a specific mass in 
order to achieve the goals of the test flight – a change 
in trajectory will accomplish the same ends. To 
investigate this, initial flight path angles and altitudes 
are optimized for a range of test vehicle masses to 
determine their affect on the flight test responses. The 
resulting optimal combinations of flight path angle and 
test vehicle mass are shown in Fig. 5. Although not 
shown, optimal altitudes varied from 40 km for the 
lightest vehicle to 38 km for the heaviest.  
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Fig. 5. Acceptable test vehicle mass range for  

γMars = -30 deg. 
 
The solid curves in the plot show the optimal parachute 
deployment flight path angle for a given test vehicle 
mass for each parachute force model. Along the solid 
lines, both ΔFp,max and ΔFp,avg are within ±10% of the 

reference Mars value. However, the ΔtM=1.5 value 
exceeds ±10% of the Mars reference value outside of 
the horizontal dotted lines shown in Fig. 5. Test vehicle 
mass is bounded on the low end by the ΔtM=1.5 
constraint on the inflation curve optimization and 
bounded on the high end by the apparent mass 
optimization. Results show that a test vehicle ranging 
between about 2,500-2,700 kg will enable good 
responses during a flight test. 
 
5.4. Sensitivity to Non-Optimal Flight Test 

Conditions 
 
Because of uncertainties in the test environment, it may 
not be possible to fly an optimal trajectory. In order to 
assess the impact of a non-optimal flight test on the 
system responses, a design of experiments was 
performed over a range of flight path angles and 
altitudes for a fixed test vehicle mass. Contours 
representing the flight test design space are shown in 
Fig. 6. 
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(a) Inflation curve model 
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(b) Apparent mass model 

 

Fig. 6. Earth flight test design space for  
mv = 2900 kg and γMars = -30 deg. 

 



The thick solid contours are lines of ΔFp,max, thin solid 
contours are lines of ΔtM=1.5, and thin dashed contours 
are lines of ΔFp,avg. These contours illustrate three 
important parameters about the flight test design space. 
First, it is not possible to simultaneously achieve a 
match for both ΔFp,max and ΔtM=1.5 – the 0% contour 
lines for the responses do not intersect. Second, 
the -10% constraint on ΔtM=1.5 is an active constraint 
for the apparent mass model optimization, causing the 
more negative flight path angles. This explains why the 
optimizer generated different results for the apparent 
mass case. Third, over a 10% change in the peak load 
will occur for a given flight path angle if the altitude is 
one kilometer higher or lower than the optimal altitude. 
This means that a 2.5% error (1 km error given a 40 
km optimal altitude) in altitude will result in over a 
10% error in peak load.  
 
If a small error in altitude can elicit a large change in 
peak load, how difficult is it to obtain the optimal 
altitude? In other words, is how difficult is it to obtain 
a certain flight condition? Table 5 compares the 
conditions anticipated prior to the BLDT AV-4 test 
flight and the conditions actually witnessed by the 
flight test vehicle. 
 

Table 5. Comparison of expected and actual flight 
conditions at AV-4 mortar fire [4]. 

 Expected Flight Difference 
Mach Number 2.178 2.126 2.4% 
Dyn Pressure (Pa) 519 522 0.57% 
Velocity (m/s) 708.4 698.0 1.5% 
Altitude (km) 43.78 44.86 2.4% 

 
Table 5 illustrates that, given the proper test setup, the 
simulated (or expected) flight conditions can be 
obtained fairly accurately. However, it also shows that 
a 2.5% error in altitude is not a rare occurrence, 
potentially meaning greater than expected loads on the 
parachute. 
 
6. CONCLUDING REMARKS 
 
6.1. Conclusions 
 
Several analyses were performed to determine the 
optimal flight test conditions to replicate the parachute 
loading environment that would be experienced at 
Mars. These analyses were performed assuming a 
relatively heavy Mars entry mass (4,000 kg) and the 
use of a large diameter (30 m) DGB parachute, 
deployed at high supersonic speed (Mach 3). Two 
opening loads models, an empirical inflation curve 
model and a more physically meaningful apparent 
mass model were used to optimize trajectories. 
Although it initially appeared that the two models were 
generating substantially different optimal conditions, it 
was shown that the two models actually generate 

similar responses. It was also shown that there is a 
range of test vehicle masses which can provide 
acceptable flight test results given optimal initial flight 
conditions. 
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